<u>Analyze</u>

Straight Line Equation	$y = \beta_0 + \beta_1 x$ $\beta_0: y - intercept when x = 0$ $\beta_1: slope of line$ $y_{observed} = (mean value of y for a given value of x)$ + random error $y = \beta_0 + \beta_1 x + \varepsilon$ Random error: difference between v_observed and v_mean
The Method of Least Squares	Best-fitting line prediction equation (regression line): $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ \hat{y} : predicted value of y obtained from the fitted line $\hat{\beta}_0 \& \hat{\beta}_1$: estimates of the true $\beta_0 \& \beta_1$ Principle of Least Squares: Sum of Squared Errors = $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ By substituting the value of \hat{y}_i : Sum of Squared Errors = $SSE = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$ Least square estimates of $\hat{\beta}_0 \& \hat{\beta}_1$ can be estimated as follows: $S_{x^2} = \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}$ $\hat{\beta}_1 = \frac{S_{xy}}{S_{x^2}}$ and $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$

Arelyze (2)
Calculating
$$O_{\Sigma}^{2}$$
: variability of random errors (E)
 $extinator of $O_{\Sigma}^{2} = \underline{SSE}$ ($\widehat{\mathcal{C}}_{\Sigma}^{2} = \underline{Southius released to}$
 $O_{\Sigma}^{2} = \underline{SSE}$ ($\widehat{\mathcal{C}}_{\Sigma}^{2} = \underline{Southius released to}$
 $O_{\Sigma}^{2} = \underline{SSE}$ ($\widehat{\mathcal{C}}_{\Sigma}^{2} = \underline{Southius released to}$
 $SSE can also be written as:
 $SSE = Sy2 - \widehat{\beta}_{1}Syy$
 $= Sy2 - (\underline{Syy})^{2}$
where:
 $Sy2 = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}$
 $y_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}$
 $g_{\Sigma} \times of values fall in the region of $\widehat{\alpha}$
 $\pm 1.96 \widehat{\mathcal{C}}_{\Sigma}$ (as a check for $\overline{\mathcal{O}}_{\Sigma}$).
Inferences
Concerning Null hypothesis H₀: $\beta_{1} = O$
the slope β_{1}
of a line $f_{\Sigma} + f_{\Sigma}$, where $S_{\mu}^{2} = \widehat{O}_{\Sigma}$
 S_{μ}^{2} if $\beta_{1} \neq O$ \Rightarrow binar relationship
 $Standows clustation of the slope =$
 $S_{D} = \frac{S}{\sqrt{S_{X}^{2}}}$
Use critical value of the slope =
 $S_{D} = \frac{S}{\sqrt{S_{X}^{2}}}$
 $Value critical value of the slope =$
 $S_{\mu} = \frac{S}{\sqrt{S_{X}^{2}}}$
 $Value critical value of the slope =$
 $S_{\mu} = \frac{S}{\sqrt{S_{X}^{2}}}$
 $Value critical value of the slope =$
 $S_{\mu} = \frac{S}{\sqrt{S_{X}^{2}}}$
 $Value critical value of the slope =$
 $S_{\mu} = \frac{S}{\sqrt{S_{X}^{2}}}$
 $Value critical value of the slope =$
 $S_{\mu} = S_{\mu} = S_$$$$